
13 Appendix

13.1 Causal effects with continuous mediator and

continuous outcome

Consider the model of Section 3,

yi = β0 + β1 mi + β2 xi + β3 xi mi + β4 ci + ε1i, (49)

mi = γ0 + γ1 xi + γ2 ci + ε2i, (50)

where the residuals ε1 and ε2 are assumed normally distributed with zero

means, variances σ2
1, σ2

2, and uncorrelated with each other and with the

predictors in their equations. The definitions for the direct, total indirect,

pure indirect, and total effects are

DE = E[Y (1,M(0))− Y (0,M(0)) | C], (51)

TIE = E[Y (1,M(1))− Y (1,M(0)) | C], (52)

PIE = E[Y (0,M(1))− Y (0,M(0)) | C], (53)

TE = E[Y (1,M(1))− Y (0,M(0)) | C]. (54)

The general expression used in these differences is E[Y (x,M(x′)) | C = c],

where x, x’ equal 0 or 1. Because the expectation is not conditioned on m,
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it is obtained by integrating out the mediator M,

E[Y (x,M(x′)) | C = c] =
∫ +∞

−∞
(β0 + β1 m+ β2 x+ β3 x m+ β4 c) (55)

× f(m; γ0 + γ1 x
′ + γ2 c, σ

2
2) ∂M, (56)

= β0 + β2 x+ β4 c (57)

+ β1 E[M | X = x′, C = c] + β3 x E[M | X = x′, C = c],

(58)

where the last step is obtained by the fact that
∫
Z×f(Z;E[Z], V (Z)) ∂Z =

E[Z]. Using this general expression, the four effects are obtained by

alternating the 0 and 1 values of x and x’. Straightforward simplifications

of the differences give

DE = E[Y (1,M(0))− Y (0,M(0)) | C = c] = β2 + β3 γ0 + β3 γ2 c, (59)

TIE = E[Y (1,M(1))− Y (1,M(0)) | C = c] = β1 γ1 + β3 γ1, (60)

PIE = E[Y (0,M(1))− Y (0,M(0)) | C = c] = β1 γ1, (61)

TE = E[Y (1,M(1))− Y (0,M(0)) | C = c] = β2 + β1 γ1 + β3 γ0 + β3 γ1 + β3 γ2 c.

(62)

This agrees with the results in the Appendix of VanderWeele and Vanstee-

landt (2009), setting a = 1 and a∗ = 0 using their notation for x.
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13.2 Causal effects with a continuous mediator

and a binary outcome

Consider a mediation model for a binary outcome y and a continuous

mediator m. Assume a probit link for the binary outcome,

probit(yi) = β0 + β1 mi + β2 xi + β3 xi mi + β4 ci, (63)

mi = γ0 + γ1 xi + γ2 ci + ε2i, (64)

where the residual ε2 is assumed normally distributed as before and where

probit(yi) is defined via

P (Yi = 1 | m,x, c) =
∫ probit(yi)

−∞
f(z; 0, 1) ∂z = Φ[probit(yi)], (65)

where f(z; 0, 1) is a standard normal density with mean zero and variance

one and Φ is a standard normal distribution function. Equivalently, (63) can

be expressed with a continuous latent response variable y∗i as the dependent

variable, adding a residual with variance one.

As in section 13.1 consider the general expression E[Y (x,M(x′)) |C =

c]. Integrating over M,

E[Y (x,M(x′)) | C = c] =
∫ ∞
−∞

E[Y | C = c,X = x,M = m]× f(M | C = c,X = x′) ∂M

(66)

=
∫ ∞
−∞

∫ probit(y)

−∞
f(z; 0, 1)∂z × f(M ; γ0 + γ1 x

′ + γ2 c, σ
2
2) ∂M

(67)

=
∫ probit(x,x′)

−∞
f(z; 0, 1) ∂z, (68)
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where the last equality can be derived by a variable transformation and a

change of the order of integration as in Muthén (1979; p. 810, Appendix

Theorem) with

probit(x, x′) = [β0+β2 x+β4 c+(β1+β3 x)(γ0+γ1 x
′+γ2 c)]/

√
v(x), (69)

where the variance v(x) is

v(x) = (β1 + β3 x)2 σ2
2 + 1. (70)

where σ2
2 is the residual variance for the continuous mediator m.

13.2.1 Indirect effect

Consider the causally-defined indirect effect of the binary treatment variable

x scored 0 for controls and 1 for treatment,

E[Y (1,M(1))− Y (1,M(0)) | C] =

=
∫ ∞
−∞

E[Y | C = c,X = 1,M = m]× f(M | C = c,X = 1) ∂M

−
∫ ∞
−∞

E[Y | C = c,X = 1,M = m]× f(M | C = c,X = 0) ∂M. (71)

This corresponds to the total indirect effect of (8).

For the first term in (71), x = x’=1. For the second term, x=1, x’=0,

so that the γ1 x
′ term of (69) is zero, thereby blocking the SEM, reduced-

form indirect effect for the probit. The two terms of (71) can therefore be

expressed as

Φ[probit(1, 1)]− Φ[probit(1, 0)], (72)
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where again the first probit index refers to x and the second to x’ with

values 0 and 1 for the control and treatment group inserted in (69).

Similarly, the pure indirect effect of (13) can be expressed as

Φ[probit(0, 1)]− Φ[probit(0, 0)], (73)

These results agree with those presented in Imai et al. (2010a, Appendix

F).

13.2.2 Direct effect

The causally-defined direct effect is

E[Y (1,M(0))− Y (0,M(0)) | C] = (74)

=
∫ ∞
−∞
{E[Y | C = c,X = 1,M = m]− E[Y | C = c,X = 0,M = m]}

× f(M | C = c,X = 0) ∂M. (75)

It follows from the above derivations of the indirect effect that the direct

effect can be expressed as

Φ[probit(1, 0)]− Φ[probit(0, 0)]. (76)
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13.3 Causal effects for binary mediator and bi-

nary outcome

In Section 4 the direct effect is defined as

E[Y (1,M(0))− Y (0,M(0)) | C] = (77)

=
∫ ∞
−∞
{E[Y | C = c,X = 1,M = m]− E[Y | C = c,X = 0,M = m]}

× f(M | C = c,X = 0) ∂M (78)

and the total indirect effect as

E[Y (1,M(1))− Y (1,M(0)) | C] = (79)

=
∫ ∞
−∞

E[Y | C = c,X = 1,M = m]× f(M | C = c,X = 1) ∂M

−
∫ ∞
−∞

E[Y | C = c,X = 1,M = m]× f(M | C = c,X = 0) ∂M. (80)

With a binary mediator M, the integral is replaced by a sum over the two

values of M and the density f is replaced by the probability of M=0, 1. Note

also that for a binary variable Y, E[Y ] = P (Y = 1). Let FY (x,m) denote

P (Y = 1 | X = x,M = m) and let FM (x) denote P (M = 1 | X = x),

where F denotes either the standard normal or the logistic distribution

function corresponding to using probit or logistic regression. It follows that

the direct effect is

E[Y (1,M(0))− Y (0,M(0)) | C] = (81)

[FY (1, 0)− FY (0, 0)] [1− FM (0)] + [FY (1, 1)− FY (0, 1)] FM (0) (82)
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and the total indirect effect is

E[Y (1,M(1))− Y (1,M(0)) | C] = (83)

FY (1, 0) [1− FM (1)] + FY (1, 1) FM (1) (84)

− FY (1, 0) [1− FM (0)]− FY (1, 1) FM (0) (85)

= FY (1, 0) [FM (0)− FM (1)] + FY (1, 1) [FM (1)− FM (0)] (86)

= [FY (1, 1)− Fy(1, 0)] [FM (1)− FM (0)]. (87)

The pure indirect effect is similarly derived as

E[Y (0,M(1))− Y (0,M(0)) | C] = (88)

= [FY (0, 1)− FY (0, 0)] [FM (1)− FM (0)]. (89)

The direct effect and pure indirect effect expressions agree with those

in Pearl (2010, 2011a) as given in connection with the artificial example.

Odds ratio expressions can be obtained as well. For the direct effect, it

follows that the numerator and denominator probabilities of the odds ratio

are

E[Y (1,M(0))] = FY (1, 0) (1− FM (0)) + FY (1, 1) FM (0), (90)

E[Y (0,M(0))] = FY (0, 0) (1− FM (0)) + FY (0, 1) FM (0). (91)

For the total indirect effect, it follows that the numerator and denominator
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probabilities of the odds ratio are

E[Y (1,M(1)] = FY (1, 0) (1− FM (1)) + FY (1, 1) FM (1), (92)

E[Y (1,M(0))] = FY (1, 0) (1− FM (0)) + FY (1, 1) FM (0). (93)

13.4 Causal effects for a nominal mediator

As in Section 13.2.1, consider

E[Y (x,M(x′)) | C = c] =
S∑
s=1

E[Y | C = c,X = x,M = m]× P (M | C = s,X = x′),

(94)

where Y is a continuous outcome, and P is the multinomial logistic

regression formula for the probabilities of the nominal mediator M,

P (M | C = s,X = x′) = eγ0s+γ1s x′+γ2s c/
D∑
d=1

eγ0d+γ1d x
′+γ2d c, (95)

where the γ coefficients are all zero for the last category. This formula can

be applied as before to the direct, total indirect, pure indirect, and total

effects defined as

E[Y (1,M(0))− Y (0,M(0)) | C], (96)

E[Y (1,M(1))− Y (1,M(0)) | C], (97)

E[Y (0,M(1))− Y (0,M(0)) | C], (98)

E[Y (1,M(1))− Y (0,M(0)) | C]. (99)
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13.5 Causal effects for a count outcome

As in Section 13.2.1, consider

E[Y (x,M(x′))] =
∫ ∞
−∞

E[Y | C = c,X = x,M = m]× f(M | C = c,X = x′) ∂M.

(100)

For a count outcome Y the log rate is modeled, so that the rate (mean) is

E[Y | C = c,X = x,M = m] = eβ0+β1 m+β2 x+β3 x m+β4 c. (101)

Letting µM = γ0 + γ1 x
′ + γ2 c denote the mean of the normal density f, it

follows that

E[Y (x,M(x′))] = eβ0+β2 x+β4 c

∫
eβ1 M+β3 x Mf(M ;µM , σ2) ∂M, (102)

= eβ0+β2 x+β4 c e(b
2−1) µ2

M/2σ2

∫
f(M ; b µM , σ2) ∂M, (103)

where the integral over the normal density f is one, and where

b = (2σ2(β1 + β3 x)/µM + 2)/2. (104)

The expressions for the direct and indirect effects then follow as before.

Both the Poisson and negative binomial model for counts have the

rate (mean) as given above and therefore have the same effect formulas.

Zero-inflated models need to take into account that the mean is the rate

multiplied by (1− π), where π is the probability of being in the zero class.

The count variable can also be a mediator in which case the integral

is replaced by a sum over the possible counts and using the probabilities
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determined by the Poisson distribution. Using m to predict y, m may be

treated as continuous.

13.6 Imai et al. sensitivity analysis

The following derivation explicates that of Imai (2010b, Appendix D), with

the trivial extension of including a covariate C. Consider again the model

of Section 3, but for simplicity without the treatment-mediator interaction,

yi = β0 + β1 mi + β2 xi + β4 ci + ε1i, (105)

mi = γ0 + γ1 xi + γ2 ci + ε2i, (106)

where the residuals ε1 and ε2 are assumed normally distributed with

zero means and variances σ2
1, σ2

2. To reflect omitted mediator-outcome

confounders, let the residuals have correlation ρ, that is, covariance ρ σ1 σ2.

The reduced-form is

yi = β0 + β1 (γ0 + γ1 xi + γ2 ci + ε2i) + β2 xi + β4 ci + ε1i, (107)

= β0 + β1 γ0 + β1 γ1 xi + β2 xi + β1 γ2 ci + β4 ci + β1 ε2i + ε1i. (108)

Consider the regression

yi = κ0 + κ1 xi + κ2 ci + εi, (109)
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where from the reduced-form

κ0 = β0 + β1 γ0, (110)

κ1 = β2 + β1 γ1, (111)

κ2 = β4 + β1 γ2, (112)

εi = β1 ε2i + ε1i. (113)

Consider what can be identified using the two regressions of (106) and (109),

first in the case of ρ = 0 and then for ρ 6= 0. Let ρ̃ denote the correlation

between the residuals in these two regressions, ε2 and ε, so that the residual

covariance is ρ̃ σ2 σ, where σ2 is the variance of ε. Note that the residual

covariance can be expressed as

Cov(ε2, ε) = ρ̃ σ2 σ = β1 σ
2
2 + ρ σ1 σ2, (114)

and the variance of the residual σ2 as

σ2 = β2
1 σ2 + σ1 + 2 β1 ρ σ1 σ2. (115)

13.6.1 The case of ρ = 0

From (114) it follows that β1 is identified as

β1 = ρ̃ σ2 σ/σ
2
2 = ρ̃ σ/σ2. (116)

Together with γ1 being identified from (106), this identifies the usual

indirect effect β1 γ1.
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13.6.2 The case of ρ 6= 0

From (114) it is possible to express σ1 as

σ1 = (ρ̃ σ − β1 σ2)/ρ. (117)

Inserting this in (115) gives a quadratic equation with solution

β1 = σ/σ2 (ρ̃− ρ
√

(1− ρ̃2)/(1− ρ2)). (118)

Together with γ1 being identified from (106), this identifies the usual

indirect effect β1 γ1, assuming a fixed, known value of ρ. In addition, it is

seen that the remaining parameters β2, β0, σ1 are identified. For example,

the direct effect β2 is obtained via (111) as

β2 = κ1 − β1 γ1, (119)

where β1 is given in (118), κ1 is obtained from the outcome regression (109),

and γ1 is obtained from the mediator regression in (106).
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